【北师大版九年级上第四章图形的相似单元测试】北师大5年级下册单元测试

来源:思想汇报 发布时间:2019-08-14 06:19:17 点击:
北师大版九年级上第四章图形的相似单元测试 1.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( ) A.1B.2C.3D.4 2.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为( ) A.1:4B.4:1C.1:2D.2:1 3.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比( ) A.增加了10%B.减少了10% C.增加了(1+10%)D.没有改变 4.已知2x=3y(y≠0),则下面结论成立的是( ) A.=B.=C.=D.= 5.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( ) A.∠E=2∠K B.BC=2HI C.六边形ABCDEF的周长=六边形GHIJKL的周长 D.S六边形ABCDEF=2S六边形GHIJKL 6.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=( ) A.B.C.D.1 7.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( ) A.B. C.D. 8.下列说法正确的是( ) A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形 B.两位似图形的面积之比等于位似比 C.位似多边形中对应对角线之比等于位似比 D.位似图形的周长之比等于位似比的平方 9.在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为( ) A.320cmB.320mC.2000cmD.2000m 10.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为 . 11.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD= . 12. 在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度 是 km. 13.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:
,可以使得△FDB与△ADE相似.(只需写出一个) 14.如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= . 15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的 倍. 16.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABn∁nCn﹣1的面积为 . 17.若,则= . 18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1) (1)求直线AD的解析式;

(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标. 19.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1. (1)△A1B1C1与△ABC的位似比是 ;

(2)画出△A1B1C1关于y轴对称的△A2B2C2;

(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是 . 20.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法) 21.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上. (1)求证:△BDE∽△CEF;

(2)当点E移动到BC的中点时,求证:FE平分∠DFC. 22.已知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G. (1)求证:BE=DF;

(2)当=时,求证:四边形BEFG是平行四边形. 23.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD. (1)求证:EB=GD;

(2)若∠DAB=60°,AB=2,AG=,求GD的长. 24.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸). ①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;

②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米. 根据以上测量过程及测量数据,请你求出河宽BD是多少米? 25.如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C. (1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1 S2+S3(用“>”、“=”、“<”填空);

(2)写出如图中的三对相似三角形,并选择其中一对进行证明.

推荐访问:
上一篇:华东师大七年级数学下 华东师大版七年级数学上册,第2章,有理数,单元测试题含答案
下一篇:最后一页

Copyright @ 2013 - 2018 韩美范文网- 精品教育范文网 All Rights Reserved

韩美范文网- 精品教育范文网 版权所有 湘ICP备11019447号-73