[2018届高三数学二轮复习,冲刺提分作业,第三篇,多维特色练,小题分层练,基础练(二)理]

来源:职场知识 发布时间:2019-09-03 09:20:47 点击:
基础练(二) 时间: 40分钟 分值:80分 1.设集合A={x|x2-6x+83a”是“a>3”的( ) A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分又不必要条件 7.执行如图所示的程序框图,则输出的结果是( ) A.7B.12C.17D.19 8.把函数y=sin的图象先向右平移个单位长度,再把图象上各点的横坐标缩短为原来的,所得函数图象的解析式为( ) A.y=sinB.y=sin C.y=sinD.y=sin 9.某几何体的三视图如图所示,则该几何体的表面积为( ) A.24+8B.16+12 C.24+12D.48 10.已知a,b,c分别为△ABC三个内角A,B,C的对边,若A=,则a(cos C+sin C)=( ) A.a+bB.b+cC.a+cD.a+b+c 11.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点.P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于点M,N.若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为( ) A.B.C.D. 12.设(4x-1)2 017=a0+a1x+a2x2+…+a2 017x2 017,则=( ) A.0B.-1C.1D.2 13.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为 . 14.在各项都为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 . 15.设e1,e2为单位向量,其中a=2e1+e2,b=e2,且a在b上的投影为2,则e1与e2的夹角为 . 16.若实数x,y满足约束条件且(x+a)2+y2的最小值为6,a>0,则a= . 答案精解精析 1.A 由x2-6x+83a不能得到a>3,如取a=-1,此时a2>3a,但a3可得到a2>3a.因此,“a2>3a”是“a>3”的必要不充分条件,选B. 7.B 第一次循环,a=1,b=1,S=2,c=1+1=2,S=2+2=4; 第二次循环,a=1,b=2,c=1+2=3,S=4+3=7; 第三次循环,a=2,b=3,c=2+3=5,S=7+5=12, 此时c>4,结束循环,故输出的S=12.故选B. 8.B 把函数y=sin的图象向右平移个单位长度,得函数图象的解析式为y=sin=sin,再把图象上各点的横坐标缩短为原来的,得函数图象的解析式为y=sin. 9.C 由三视图可得该几何体是三棱柱,底面是一个角为30°、斜边为4且斜边上的高为的直角三角形,三棱柱的高为4,故该几何体的表面积为2××4×+(2+2+4)×4=24+12. 10.B 设R为△ABC外接圆的半径, 则a(cos C+sin C)=2Rsin Acos C+2Rsin Asin C =2Rsin Acos C+3Rsin C=2R =2R(sin Acos C+cos Asin C+sin C) =2R[sin(A+C)+sin C] =2R(sin B+sin C)=b+c. 11.B ∵|PF1|=2|PF2|,|PF1|-|PF2|=2a,∴|PF1|=4a,|PF2|=2a,又∠MF2N=60°,∴∠F1PF2=60°,由余弦定理可得,4c2=16a2+4a2-2·4a·2acos 60°,得c=a,∴e==,故选B. 12.C 在已知等式中,令x=0,得a0=-1; 令x=,得a0+++…+=0,故++…+=1,即=1,故选C. 13.答案 25 解析 男生人数为900-400=500.设应抽取男生x人,则有=,解得x=25.即应抽取男生25人. 14.答案 4 解析 由a8=a6+2a4,两边都除以a4,得q4=q2+2,即q4-q2-2=0⇔(q2-2)(q2+1)=0,∴q2=2. ∵a2=1,∴a6=a2q4=1×22=4. 15.答案 解析 设e1与e2的夹角为θ,则===2|e1|·|e2|cos θ+1=2,解得cos θ=,所以θ=. 16.答案 解析 作出可行域,如图中阴影部分所示,∵a>0, ∴P(-a,0)在x轴负半轴上,∴可行域内的点A到P(-a,0)的距离最短,解方程组得A(0,2),∴a2+4=6,解得a=. - 5 -

推荐访问:
上一篇:制度管理办法 某公司员工管理办法及条例汇编_21
下一篇:最后一页

Copyright @ 2013 - 2018 韩美范文网- 精品教育范文网 All Rights Reserved

韩美范文网- 精品教育范文网 版权所有 湘ICP备11019447号-73